
JOURNAL OF SOLID STATE CHEMISTRY 15. 181-185 (1975) 

Statistical Approach to Anderson-Gtineisen Parameter S* 

S. GUPTA, M. N. SHARMA, AND S. R. TRIPATHI 

Department of Physics, Lucknow University, Lucknow 226007, India 

Received July 24,1974 

A simple and general relation has been developed for the Anderson-Griineisen parameter 6 in terms 
of the Griineisen parameter y, employing a statistical approach for ioniccrystals. Therelationcan be 
expressed as 6 = ay”, where a and 6 are some arbitrary constants. It has been concluded that the 
developed relation is a general form of Chang’s relation (6 = 2~). 

Introduction 

Analogous to Griineisen parameter y (I), 
the Anderson-Grtineisen parameter 6 is also 
an important parameter in describing the 
macroscopic properties of solids. It was first 
introduced by Anderson (2) during his studies 
on the temperature variation of bulk modulus 
of MgO. To date, several formulas have been 
put forward relating it to various microscopic 
lattice properties (3-10). Recently Sharma and 
Tripathi (7, 8) obtained a general expression 
for 6 that can be applied directly to any form 
of potential energy function. In the present 
work, this expression has been used to com- 
pute the theoretical values of 6 for some cubic 
crystals employing two forms of potential 
energy functions, i.e., the well-known 
Lennard-Jones (12 : 6) and the Wasastjerna 
potential models. Moreover, an empirical 
relation has been developed between 6 and y 
employing the statistical method of least 
squares. 

Theory 

Following Anderson, Sharma and Tripathi 
(7, 8) have successfully derived a general 
expression for ionic crystals relating 6 with y 

*Work supported by the University Grants Com- 
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through the potential parameters. It can be 
expressed as 

6= 

(1 + Y>f’Wd - (1 + Y) ~lJ.r(~o) 
- ~ozf”(~o> + (7ueW KY”>>(y - (1/3N 

(1 + Yl.fwo> + ~of”(~o) 
+ (M(3 v*‘“)) (Y - U/3)) 

(1) 
where y is the Griineisen parameter, u is the 
Madelung constant, and e is the electronic 
charge. f’( V,), f”( V,), and f’“( V,) are respect- 
ively the first, second, and third derivatives of 
potential energy functionf(u) at V = V,. 

To compute f’( V,,), f”( V,), and f”‘( V,) for 
evaluating 6 from Eq. (l), two potential 
models have been chosen, as stated in the 
preceding section. The Wasastjerna potential 
energy function has been extensively used to 
evaluate the lattice energies and other crystal 
properties for several alkali halide and hydride 
crystals (II, 12). The well-known Lennard- 
Jones (12: 6) model has been successfully 
used earlier to explain the various lattice 
properties for alkali and metal halides (13-15). 

The Wasastjerna and Lennard-Jones poten- 
tial energy functions can be expressed in terms 
of specific volume as : 

C 
F(V) = - f + pu’ln exp(-/?v”) - Fn - $” (2) 

Copyright Q 1975 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 
Printed in Great Britain 

181 



182 GUPTA, SHARMA AND TRIPATHI 

and ? 
F(v)=--$+-&-g;n (3) 

where v = r3 and n = 3. r is the interionic 
distance, CL, /3, and A are the parameters of 
potential energy functions, and C and D 
are the van der Waals constants. 

The potential parameters 11 and /l in Eq. (2) 
and (3) have been evaluated by applying the 
following lattice conditions : 

WI,=, = -E (4) 

44r) -I ,I” =o (5) 
U‘ I r-r0 

where E is the lattice energy of the crystal. 
For the Lennard-Jones (12 : 6) model the 
sole potential parameter 1 has been evaluated 
from the lattice condition expressed by Eq. (5). 

Once the potential parameters are evaluated, 

the first, second, and third derivatives of 
f(v), i.e., f’(V,), f”(V,), and f”(V,) can be 
computed for the respective potential models, 
simply by feeding the necessary experimental 
data (19-22). 

Recently Sharma and Jain (10) and Misra 
and Sharma (16) have suggested a general 
expression for the Grtineisen parameter y in 
terms of the derivatives of the potential energy 
function, which can be expressed as : 

Y = ? w”‘wl w(~cJl-’ (6) 

where $“(r,) and t,Y”(r,) are, respectively, the 
second and third derivatives of the potential 
energy function $(r) at r = ro. 

The theoretical values of y are computed 
from Eq. (6) using Wasastjerna as well as 
Lennard-Jones potential functions. These 
values have been presented in Table I (Cols. 
2 and 3, respectively). 

TABLE I 

THE VALUES OF GR~~NEISEN PARAMETER y AND ANDERSON-GRUNEISEN PARAMETER 6 

LiF 
LiCl 
LiBr 
LiI 

NaF 
NaCl 
NaBr 
NaI 

KF 
KC1 
KBr 
KI 

RbF 
RbCl 
RbBr 
RbI 

CsF 
CsCl 
CsBr 
CSI 

2.6628 0.6064 1.7611 - 
2.7392 0.8218 1.7853 - 
2.7450 1.5364 2.0282 - 
2.7708 2.2782 2.2325 - 

2.7128 0.9241 1.8059 - 
2.7451 1.3792 1.7454 3.5448 
2.6807 1.3327 1.7857 - 
2.7611 1.8770 1.8967 3.2684 

2.7515 2.0537 1.7398 - 
2.6306 1.3338 1.6069 - 
2.7667 1.5955 1.5841 - 
2.7830 1.9139 1.7262 3.8539 

2.7600 - 1.4217 - 
2.7970 1.6361 1.5353 4.6220 
2.7752 1.8146 1.5080 4.4787 
2.7467 3.2735 1.7430 4.4119 

2.8008 - 2.7555 - 
2.7817 2.0041 1.9700“ 4.0098 
2.8694 1.7846 1.9300” 4.5498 
3.0252 2.7720 2.0000” 4.3053 

4.12 
4.63 
4.68 
5.17 

4.19 
4.25 
- 

4.48 
- 

4.31 
4.38 
4.09 
- 

4.35 
4.30 
4.40 
- 

4.78 
4.81 
3.76 

3.5222 
3.5706 
4.0564 
4.4650 

3.6118 
3.4908 
3.5714 
3.7934 

3.4796 
3.2138 
3.1682 
3.4524 

2.8434 
3.0706 
3.0160 
3.4860 

5.5110 
3.9400 
3.8600 
4.0000 

3.7479 
3.5827 
3.6092 
3.7524 

3.1294 
3.7225 
4.5396 
3.9061 

3.7535 
3.8956 
3.9106 
4.4106 

3.7602 
3.7757 
3.5405 
4.1932 

3.6099 
4.0075 
3.3711 
3.5928 

5.8085 
5.5069 
4.5174 
4.2495 

5.6716 
5.1003 
5.8756 
4.4865 

4.4500 
3.9336 
4.9473 
5.0071 

- 
0.7804 
1.3017 
2.5890 

0.8955 
1.3605 
0.6836 
2.0179 

2.3174 
1.0600 
0.4638 
1.9364 

- - 

4.9394 1.4798 
4.4937 1.6256 
3.7126 5.1382 

- - 

4.7761 3.1124 
4.4085 1.2113 
3.8344 3.5269 

1.6133 4.6565 
2.6742 4.5212 
2.4462 4.3222 
3.0518 4.2944 

2.0103 4.8209 
2.3123 4.7318 
2.4837 5.4439 
2.8993 4.5726 

2.7739 
2.3559 
1.4313 
2.8056 

2.2396 
1.7179 
1.9720 
3.0939 

1.0707 
2.0189 
1.9579 
2.8794 

3.3090 
2.0829 
1.4395 
2.9882 

2.6467 
2.8675 
4.6481 

4.7654 
4.9224 
4.9614 
5.4641 

5.0989 
5.0404 
4.8088 
5.2040 

- 

2.7416 
3.1608 
6.1673 

- 3.7472 - 
3.9084 4.9298 3.9297 
1.9240 5.3373 1.8205 
3.7780 4.5997 4.5403 

First subscript denotes values of y used. Second subscript (1) denotes Leonard-Jones model. Second subscript 
(2) denotes Wasastjerna model. 

’ Ref. (20). 
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TABLE II 

THE VALUES OFPARAMETERS a AND b 

Parameters” 
Halides Alkali Alkali Alkali Alkali 

Li Na K Rb Cs fluorides chlorides bromides iodides 

011 
b II 
el 
b 21 
a3L 
b 31 
42 
b 12 
a22 
b 22 
h2 
b 32 

1.00 0.33 0.34 0.69 0.75 1.89 -1.51 2.37 21.56 
1 .oo 0.75 0.11 -0.25 -0.42 -30.50 4.17 -4.07 -60.00 
0.63 0.76 0.57 0.71 0.77 0.72 0.70 0.85 2.45 
0.25 0.33 0.36 -0.23 -0.40 -0.18 -1.41 -0.84 -0.49 

-1.58 0.79 0.64 0.67 0.94 0.78 0.99 1.04 0.93 
-0.32 -0.39 0.28 0.15 -0.83 -0.44 -0.13 -0.14 -0.89 
-6.02 -10.36 -1.40 5.54 - -10.87 0.68 5.92 2.27 15.61 
14.06 23.83 3.41 -11.71 24.41 -12.00 13.20 -40.50 35.40 
0.35 0.29 0.09 0.24 0.08 0.35 0.31 0.38 0.85 
0.36 0.71 1.25 0.85 1.23 0.71 0.94 -0.22 -0.87 
0.49 1.14 0.19 -0.40 - -14.59 -0.16 0.53 0.48 0.85 

-0.52 -31.15 0.78 4.86 51.50 2.12 -0.63 0.73 -0.98 

’ The first and second subscripts have the same meanings as in Table 1. 

Experimental values of y have also been 
obtained using following general equation 
which defines macroscopic Griineisen para- 
meter as : 

Y = 4 VGIG (7) 

where BT is the isothermal bulk modulus, 
u is the specific volume, c(, is the coefficient 
of volume thermal expansion, and C, is the 
specific heat at constant volume. In Eq. (7), 
C, can be expressed by the well-known 
thermodynamic relation as : 

C,= C,-B,vu,=T (8) 

where C, is the specific heat at constant 
pressure. Making use of Eq. (7) in conjunction 
with (8) and using the recent experimental 
input data (19-22) the experimental values 
of r have been obtained. These values of r 
are tabulated in Table I (Col. 4). In this way 
we have obtained three different values of r. 
Two theoretical values of r obtained from 
Lennard-Jones and Wasastjerna potentials 
are denoted by rl and rz, respectively, and 
the experimental r is expressed as r3 in 
Table I. 

The values of rl, rz, and r3 have been used 
in conjunction with Eq. (1) for both the po- 
tential energy functions and thus we get six 

8 

values of 6. The seventh value of 6 (6,) has 
been obtained using Chang’s relation (3) 
(S = 2r) in conjunction with Eq. (7). These 
values of 6 have been presented in Table I. 
The theoretical and experimental values of 6 
thus obtained have been plotted against the 
corresponding values of r. The statistical 
approach of the least-squares method has 
been applied and the best-fit equation for the 
curves has been derived, it may be expressed 
as: 

6 = ar” (9) 

where a and b are two arbitrary constants that 
depend on the potential parameters. The 
calculated values of a and b have been re- 
ported in Table II. 

Discussion 

Experimental and theoretical values of 6 
have been presented in Table I. The recent 
experimental values of 6 (6, and 6,) have 
been taken from Sharma et al. (I 7). The theor- 
etical values of 6, computed with the help of 
potential energy functions, i.e., the well- 
known Lennard-Jones (12 : 6) and the 
Wasastjerna model, compare satisfactorily 
with the experimental ones (6, and 6,). 
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Note that compared to other microscopic or 
macroscopic properties 6 varies in an irregular 
fashion for almost all the ionic crystals studied. 
The minimum value of 6 is 0.46 for KBr and 
the maximum value is 6.16 for RbI. 

Recently, Chang (3) suggested two simple 
and direct relations between 6 and y. Since 
Chang was not definite about the correctness 
of his relations, it was thought desirable to 
to develop a simple relation between 6 and y 

to remove this uncertainty. The curves 
plotted during present investigations may be 
put under two categories: (1) for LiX, NaX, 
etc., where X= F, Cl, Br, I for both the po- 
tential energy functions, and (2) for RF, 
RCI, etc., where R = Li, Na, K, Rb, Cs for 
both potential models. For want of space it is 
not possible to reproduce all the curves; 
therefore, only two curves are reported. 
Other curves are similar in nature to these 

FIG. 1. 6-y curves for NaX crystals. 0, Chang’s relation (S = 2y); 0, x, A, 6-y curves for Lennard-Jones 
potential function using yl, yz, and y3, respectively; w, l , A, S-y curves for Wasastjerna potential function using 
yI, yt, and y3, respectively. 

FIG. 2. 6-y curves for RCI crystals. Symbols have the same meanings as in Fig. 1. 
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curves. Fig. 1 represents NaX curves and Fig. 3. Y. A. CHANG, J. Phys. Chem. Solids 28, 697 
2 represents RCl curves for both potential (1967). 

models. It is important to mention that these 4. V. K. MATHUR, S. P. SINGH, AND D. K. VIJ, J. 

values of constants a and b exist only for a Chem. Phys. 48,4784 (1968). 

set of crystals, i.e., for LiF, LiCl, LiBr, and 5. M. P. MADAN, J. Chem. Phys. 55,464 (1971). 

LiI, etc., and cannot be evaluated individually 6. M. P. MADAN, J. Appl. Phys. 42,388s (1971). 

for each crystal. The computed values of 
7. M. N. SHARMA AND S. R. TRIPATHI, Phys. Letters 

a and b differ considerably from one group 
39A, 281 (1972). 

of crystals to another, and hence, it is rather 
8. M. N. SHARMA AND S. R. TRIPATHI, Phys. Letters 

45A, 68 (1973). 
difficult to work out a relation between a and 9. M. N. SHARMA AND S. R. TRIPATHI, Phys. Status 
b. Thus, we can infer that the constants a and b Solidi (b) 53, KI (1973). 

vary with the y values and depend on the 10. M. N. SHARMA AND R. JAIN, J. Phys. Sot. Japan 35, 
particular potential model used. Hence, it 194 (1973). 

can be concluded that the relationship between Il. V. P. VARSHNI AND R. C. SHUKLA, Rev. Mod. Phys. 

6 and y is not very simple and straightforward, 35, 130 (1963). 

as was expected by Chang. Eq. (9) refers to a 12. V. B. GOHEL, Ind. J. Pure Appl. Phys. 6, 171 

more general form of the 8-y relationship ,1 (1968). 

and the Chang’s relation (6 = 2~) may bk 
treated as a special case of this equation where 
a = 2 and b = 1. Furthermore, Eq. (9) seems 
to be a concise form of Eq. (1) (derived earlier 
by Sharma and Tripathi (7). A similar con- 
clusion has been inferred by Sharma et al. 
(17, 18). 

1.7. 

14. 

k. N. SHARMA AND M. P. MADAN, Ind. J. Phys. 
38,231 (1964). 
M. N. SHARMA AND M. P. MADAN, Ind, J. Phys. 
38, 305 (1964). 
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